Implicit Differentiation and Critical Points of a Quadratic Curve
Analyzing an implicit equation using implicit differentiation, finding the first and second derivatives, and identifying local extrema.
Problem Statement
Given the implicit equation:
\[x^2 + x y + y^2 = 12\]Find:
- The first derivative $ \frac{dy}{dx} $ using implicit differentiation.
- Points where $ \frac{dy}{dx} = 0 $ to locate potential extrema.
- The second derivative $ \frac{d^2 y}{dx^2} $ at these critical points to determine if they are local maxima, minima, or points of inflection.
Solution
Step 1: First Derivative Using Implicit Differentiation
Differentiate both sides with respect to $ x $:
\[\frac{d}{dx} \left( x^2 + x y + y^2 \right) = \frac{d}{dx} (12)\]Applying the derivative rules term by term:
\[2x + y + x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0\]Now, isolate $ \frac{dy}{dx} $:
\[(x + 2y) \frac{dy}{dx} = -2x - y\]Thus,
\[\frac{dy}{dx} = \frac{-2x - y}{x + 2y}\]Step 2: Finding Critical Points Where $ \frac{dy}{dx} = 0 $
To find the critical points, set $ \frac{dy}{dx} = 0 $:
\[\frac{-2x - y}{x + 2y} = 0\]This implies:
\[-2x - y = 0 \Rightarrow y = -2x\]Substitute $ y = -2x $ back into the original equation to solve for $ x $:
\[x^2 + x(-2x) + (-2x)^2 = 12\] \[x^2 - 2x^2 + 4x^2 = 12\] \[3x^2 = 12 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2\]So, we have two critical points:
- For $ x = 2 $, $ y = -2(2) = -4 $
- For $ x = -2 $, $ y = -2(-2) = 4 $
Step 3: Confirming Validity of Critical Points
For each point, check $ x + 2y \neq 0 $ to ensure that $ \frac{dy}{dx} $ is defined.
- At $ (2, -4) $: $ x + 2y = 2 + 2(-4) = -6 \neq 0 $
- At $ (-2, 4) $: $ x + 2y = -2 + 2(4) = 6 \neq 0 $
Since $ x + 2y \neq 0 $ for both points, they are valid critical points.
Step 4: Second Derivative Calculation
To determine whether these points are maxima, minima, or inflection points, compute the second derivative $ \frac{d^2 y}{dx^2} $:
\[\frac{d^2 y}{dx^2} = \frac{d}{dx} \left( \frac{-2x - y}{x + 2y} \right)\]Using the quotient rule with $ u = -2x - y $ and $ v = x + 2y $:
\[\frac{d^2 y}{dx^2} = \frac{(u'v - uv')}{v^2}\]where:
- $ u’ = -2 - \frac{dy}{dx} $
- $ v’ = 1 + 2 \frac{dy}{dx} $
Substituting $ \frac{dy}{dx} = \frac{-2x - y}{x + 2y} $ and simplifying, we obtain:
\[\frac{d^2 y}{dx^2} = -\frac{6(x^2 + xy + y^2)}{(x + 2y)^3}\]Step 5: Evaluate $ \frac{d^2 y}{dx^2} $ at Critical Points
At $ (2, -4) $: \(\frac{d^2 y}{dx^2} = -\frac{6((2)^2 + 2(-4) + (-4)^2)}{(-6)^3} = \frac{1}{3}\) Since $ \frac{d^2 y}{dx^2} > 0 $, this point is a local minimum.
At $ (-2, 4) $: \(\frac{d^2 y}{dx^2} = -\frac{6((-2)^2 + (-2)(4) + (4)^2)}{6^3} = -\frac{1}{3}\) Since $ \frac{d^2 y}{dx^2} < 0 $, this point is a local maximum.
Conclusion
The implicit curve defined by $ x^2 + x y + y^2 = 12 $ has:
- A local minimum at $ (2, -4) $
- A local maximum at $ (-2, 4) $
This analysis showcases how to use implicit differentiation and second derivatives to identify local extrema on curves defined by implicit equations.